If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-32t+24=0
a = 4.9; b = -32; c = +24;
Δ = b2-4ac
Δ = -322-4·4.9·24
Δ = 553.6
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-\sqrt{553.6}}{2*4.9}=\frac{32-\sqrt{553.6}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+\sqrt{553.6}}{2*4.9}=\frac{32+\sqrt{553.6}}{9.8} $
| 8y=0y= | | 8x-6x=3x | | 25+7x=7x+25 | | 5(2x+21)=3(x+35) | | 3(x+21)+4(x+14)=35 | | -6(x+4)-2=-44 | | 5(x+6)+4=39 | | c+3 +3c=4 | | 93=180x | | 86=6(7-n)-4 | | 6+3(3w-5+7w)=-(2w-1) | | 5-2(1-2y)=2y-3 | | 180-x=1.5+(72) | | -95=l+-54= | | 180-x=1.5(72) | | 188=-4(8n-7) | | 2=c/7 | | 3x+10-2x=2-3x | | 180-x=0.5x+3 | | 180-x=0.5(x)+3 | | v^2+14v+31=0 | | 2(1+2w)=10 | | -4x+31=3(1-3x)-3 | | 3y=50+2y-3 | | 7x+24=0 | | 54=9x+4 | | 5+2y-8+y=y+8+5-2y | | 9q-3=-21 | | 8(2x-11)=-4(7x+1) | | X+2y=990 | | 3(4−t)+t2=8 | | 3-9x=21-15x |